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Introduction
Recent utilization of medical imaging techniques in 
hydrogeology allows the measurement of solute 
concentrations in spatial and temporal dimensions. 
Establishing the relationship between concentration 
distributions and permeability fields will improve modeling 
of contaminant transport in complex geologically systems. 
This study presents an inversion method utilizing a 
regressive neural network that can efficiently approximate 
the 3D permeability field of geologic samples using 
imaging-derived concentration measurements. 

Data
We used 50% quantile concentration arrival time in each 
voxel to reduce the dimensionality of the imaging data. An 
example of the imaging experimental data is shown in 
Figure 1 and 2. 20,000 synthetically generated permeability 
fields are used for training, validation, and test data for the 
CNN. A traditional numerical modeling approach was used 
to produce the arrival time maps.

Results

Summary
• The network can predict the 

general pattern of the 
permeability fields and mean 
value. 

• When the permeability field 
is very homogeneous (having 
a very narrow range of 
values), the network fails to 
capture very subtle patterns.

• Future work will focus on 
quantifying network efficacy 
with statistical analysis of the 
test set (the data not used for 
training and validation), loss 
propagating strategies, and 
how to incorporate additional 
physics-based constraints.
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Methods
• The inverse modeling problem (i.e. arrival time to permeability field) is approached as an image-to-image regression task. 
• Each input normalized mean arrival time field has one corresponding labeling permeability fields, so the training process is supervised 
• For the input data, the mean permeability (𝑘 = 𝑞 $ 𝜇 $ &'() of the sediment column is represented by a column vector at the boundary of injection 

• The regressive transition 
block contains several 
residual dense blocks 
connected in a residual 
framework [1], and each 
residual dense block 
consists of several dense 
blocks [2] that are also 
connected in a residual 
learning framework [3]. 

Figures 5 and 6: Illustration of the input arrival time difference map (top row), the test data 
permeability fields, and the predicted log permeability fields of 2 testing set examples. The 
left and right rows correspond to the 2 orthogonal slices through the 3D models

Figure 4: Training (blue) and validation (orange) loss 
function during CNN training. This summarizes the 
difference between the CNN prediction and the true data.

Figure 3. Basic architecture of the network: convolution block (turquoise),  up/down-sampling 
block (white), and regressive transition block (yellow).

Test realization: 368/500 Test realization: 489/500

Figure 2. (left) Normalized arrival time map of PET data in Figure 
1 and corresponding normalized arrival time difference map (right).

Figure 1. Example time-lapse PET data showing 3D solute 
distributions.


